Hodge theory on ALG<sup>∗</sup> manifolds
نویسندگان
چکیده
Abstract We develop a Fredholm theory for the Hodge Laplacian in weighted spaces on ALG ∗ manifolds dimension four. then give several applications of this theory. First, we show existence harmonic functions with prescribed asymptotics at infinity. A corollary is non-existence result non-negative Ricci curvature having group Γ = { e stretchy="false">} \Gamma=\{e\} Next, prove decomposition first de Rham cohomology an manifold. vanishing Betti number any manifold curvature. Another application our analysis to determine optimal order gravitational instantons.
منابع مشابه
Hodge theory on nearly Kähler manifolds
Let (M, I,ω,Ω) be a nearly Kähler 6-manifold, that is, an SU(3)-manifold with the (3,0)-form Ω and the Hermitian form ω which satisfies dω = 3λReΩ, d ImΩ = −2λω, for a non-zero real constant λ. We develop an analogue of Kähler relations on M , proving several useful identities for various intrinsic Laplacians onM . WhenM is compact, these identities bring powerful results about cohomology of M ...
متن کاملHodge Theory for R- Manifolds
Let X be an R-fold, and let π : E −→ X be a real vector bundle, of rank r, equipped with a positive definite symmetric bilinear form. If e1, . . . , er ∈ π −1(X) are orthonormal, then e1 ∧ · · · ∧ er is a non-trivial vector in ∧r E. Proposition: If f1, . . . , fr is any other orthonormal basis for π −1(X), then e1 ∧ · · · ∧ er = ±f1 ∧ · · · ∧ fr. Proof. Note that fi = g · ei for g ∈ O(r), so de...
متن کاملHodge Theory and Deformations of Kähler Manifolds
We prove several formulas related to Hodge theory and the Kodaira-SpencerKuranishi deformation theory of Kähler manifolds. As applications, we present a construction of globally convergent power series of integrable Beltrami differentials on Calabi-Yau manifolds, and use an iteration method to construct global canonical families of holomorphic (n, 0)-forms on the deformation spaces of Kähler ma...
متن کاملCohomology and Hodge Theory on Symplectic Manifolds: I
We introduce new finite-dimensional cohomologies on symplectic manifolds. Each exhibits Lefschetz decomposition and contains a unique harmonic representative within each class. Associated with each cohomology is a primitive cohomology defined purely on the space of primitive forms. We identify the dual currents of lagrangians and more generally coisotropic submanifolds with elements of a primit...
متن کاملHyperkähler manifolds with torsion, supersymmetry and Hodge theory
Let M be a hypercomplex Hermitian manifold, (M, I) the same manifold considered as a complex Hermitian with a complex structure I induced by the quaternions. The standard linear-algebraic construction produces a canonical nowhere degenerate (2,0)-form Ω on (M, I). It is well known that M is hyperkähler if and only if the form Ω is closed. The M is called HKT (hyperkähler with torsion) if Ω is c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Crelle's Journal
سال: 2023
ISSN: ['1435-5345', '0075-4102']
DOI: https://doi.org/10.1515/crelle-2023-0016